/cygdrive/d/Potencial/Br/Pages-completes/acao/51-02.TXT 7- 8: 1 potencial de repouso de membrana 9- 2 potencial de ação -- 16- 17: potencial de repouso de membrana 18- 19:a diferença de potencial existente entre os dois lados da membrana de qualquer célula é normalmente negativo no interior da célula em relação ao exterior. diz-se, então, que a membrana é polarizada. a diferença de potencial entre os dois lados da membrana quando ela está em repouso é chamado potencial de repouso de membrana e possui o valor aproximado de -65 mv nos neurônios (o sinal negativo indica que o interior da célula está negativo em relação ao exterior). essa diferença de potencial é causada por vários fatores, mas os mais importantes são o transporte de íons através da membrana celular e a permeabilidade seletiva da membrana a esses íons. 20- 21:de acordo com a equação de nenrst, pode-se estabelecer o potencial de equilíbrio de cada íon, ou seja, o potencial no qual não há movimentação de determinado íon. o potássio existe em maior quantidade dentro da célula e assim possui uma força química que o impulsiona para fora e ao mesmo tempo uma força elétrica que o impulsiona para dentro. o balanço dessas forças resulta no potencial de equilíbrio do potássio, ou potencial de nerst do potássio, que é igual a -75 mv. por meio desse número, entende-se a tendência do potássio de se movimentar para fora, já que o potencial de repouso de membrana (-65 mv) é menos negativo que o potencial de nerst do potássio e, saindo da célula, o íon potássio, que é um cátion, deixa o potencial mais negativo (interior em relação ao posterior). já no caso do sódio, sua maior concentração é no exterior da célula, o que resulta numa força química que causa a entrada de íons sódio. o potencial de equilíbrio desse íon é +55 mv (muito mais positivo do que o potencial de repouso) e assim, para o que o potencial de membrana atinja esse valor, é necessária uma maior quantidade de íons positivos dentro da célula, daí a tendência desse íon de entrar na célula. o cloro, que possui um potencial de equilíbrio de -65 mv, não possui movimento significativo através da membrana celular, já que seu potencial de nerst é igual ao potencial de repouso de membrana. 22- 23:o transporte ativo de íons de potássio e sódio para dentro e para fora da célula, respectivamente, é feito por diversas bombas de sódio e potássio distribuídas pela membrana celular. cada bomba transporta dois íons de potássio para dentro da célula para cada três íons de sódio que é transportado para fora. essa ação estabelece uma peculiar distribuição de íons positivamente carregados (cátions) entre o meio intra e extracelular, com maior concentração de sódio no meio extracelular e maior concentração de potássio no meio intracelular. em alguns casos, as bombas de sódio e potássio contribuem sensivelmente para a manutenção do potencial de membrana, mas na maioria das células existem canais especiais de potássio, os canais de repouso ( leak channels ), que controlam o valor do potencial de repouso. 24- 25:a tendência natural dos íons de sódio e potássio é de se difundir pela membrana impelidos por seus gradientes eletroquímicos, em busca de seus respectivos potenciais de equilíbrio. o sódio entra na célula e o potássio sai. por causa dos canais de repouso de potássio, sempre abertos, a membrana plasmática é aproximadamente cem vezes mais permeável ao potássio do que ao sódio, ou seja, mais íons de potássio saem da célula do que íons de sódio entram na célula. essa predominância de saída de íons de potássio leva a uma hiperpolarização da membrana, que estabelece o valor do potencial de repouso de membrana em aproximadamente -70 mv. 26- 27:assim como o potencial de repouso, os potenciais de ação dependem da permeabilidade da membrana celular aos íons de sódio e potássio. 28- -- 38- 39: 1. no potencial de repouso de membrana, alguns canais de repouso de potássio estão abertos, mas os canais voltagem-dependentes de sódio estão fechados. íons de potássio se difundindo de acordo com o gradiente de concentração criam um potencial negativo de membrana (interior em relação ao exterior). 40- -- 46- 47: 5. quando os canais voltagem-dependentes de potássio se abrem, se inicia um grande movimento de saída de íons de potássio, estimulado pelo gradiente de concentração de potássio e favorecido inicialmente pelo potencial positivo da membrana (interior em relação ao exterior). à medida que os íons de potássio se difundem para o meio extracelular, o movimento de cátions causa a reversão do potencial de membrana para negativo (interior em relação ao exterior). é a repolarização do neurônio, de volta ao potencial de repouso de membrana, bastante negativo. 48- 49: 6. a grande corrente de saída de íons de potássio pelos canais voltagem-dependentes de potássio gera temporariamente um potencial mais negativo do que o potencial de repouso de membrana. esse fenômeno é conhecido como hiperpolarização de membrana. nesse ponto, as comportas inibitórias dos canais voltagem-dependentes de potássio se fecham e o potencial de membrana volta a ser comandado pelos canais de repouso de potássio. as bombas de sódio e potássio continuam bombeando íons de sódio para fora e íons de potássio para dentro, prevenindo dessa forma a perda do potencial de repouso de membrana a longo prazo. o potencial de repouso de -70 mv é reestabelecido e o neurônio é considerado repolarizado. 50- -- 52- 53:1- quando o potencial de repouso de membrana sofre uma variação de 10 mv (de -60 a -50 mv), atingindo o limiar de excitação, ocorre a sinalização para a abertura dos canais lentos de k+ e das comportas de ativação dos canais rápidos de na+ e para o fechamento das comportas lentas de inativação dos canais de na+. isso leva a um influxo imediato de grande quantidade de íons na+, levando a uma despolarização da membrana da célula. 54- -- 68- 69:é um gradiente eletroquímico que se forma entre as camadas da membrana celular em um local restrito da célula. é basicamente uma corrente de íons que percorre o meio intracelular próximo à membrana alterando o potencial de repouso desta. o potencial graduado difere do potencial de ação por não possuir sua constante magnitude e por ser caracteristicamente maior na fonte e decair à medida que se distancia desta. potenciais graduados podem surgir em diferentes partes da célula que funcionem como receptores e também após sinapses ativadas por neurotransmissores. 70-