/cygdrive/d/Potencial/Br/Pages-completes/repouso/PDF/38.TXT
1-
2:considerações gerais sobre potencial de repouso.
3-potencial de acção.
4-
5:o potencial de repouso é uma característica geral das células; este é marcado por uma diferente distribuição de cargas entre o interior e o exterior dessas mesmas células, sendo o interior negativo relativamente ao exterior. as bases iónicas deste potencial de repouso estão fundamentalmente relacionadas com dois aspectos: (1) as distribuições de sódio e potássio no meio intra e extracelular e (2) a permeabilidade ao potássio em repouso que a célula tinha.
6:quando as células comunicam umas com as outras, quando, por exemplo, é dada uma ordem ao cérebro para que a mão se mexa, é necessário modificar uma situação básica de potencial de repouso numa série de células até que se consiga chegar à resposta final que neste caso é traduzida pela contracção do músculo. na realidade o que acontece é que várias células (como as musculares esqueléticas, as musculares lisas, as do tecido cardíaco) bem como os vários nervos têm a capacidade de responder a um estímulo eficaz com alteração do seu potencial de repouso. a esta alteração do potencial normal de repouso da mebrana, provocada por um estímulo eficaz, dá-se o nome de potencial de acção. é uma resporta característica de um tecido excitável.
7-
--
18-na figura 1 está representado um neurónio, (quadrado da esquerda) e neste neurónio são colocados dois microeléctrodos, (eléctrodo que é esticado de tal maneira que a ponta acaba por ter dois/três micra de diâmetro) passíveis de serem introduzidos dentro da célula. para além disto, do lado de fora da célula temos um outro eléctrodo.
19:o potencial de repouso ou, por outras palavras, a diferença que existe entre o interior e o exterior da célula, é característico de cada tipo celular. apenas a título de curiosidade, o potencial repouso deste neurónio é de aproximadamente -70mv (milivoltes), o do músculo esquelético é de -90mv, o de várias células musculares lisas é de -60mv, o tecido condutor do coração tem -90mv e o tecido onde se origina o pacemaker cardíaco tem entre -40/-60mv.
20:para melhor compreender todos estes processos associados ao potencial de acção decidiu-se considerar a excitação do neurónio representado na imagem (cujo potencial de repouso, como já foi mencionado, é de aproximadamente -70mv). a excitação de células, neste caso do neurónio, pode ser feita por fornecimento de:
21-
--
45-
46:através da análise deste gráfico da figura 3 pode-se dizer que existe uma situação inicial com um potencial de repouso que sofrerá evolução quando a célula é excitada. pode-se então ter:
47-(1) uma fase ascendente do potencial de acção ou despolarização: a célula inverte o seu potencial sendo que o interior/lado de dentro da célula passa a positivo e o exterior/lado de fora da célula passa a negativo (neste gráfico em concreto ela tinha -60mv e chega a 0mv). este conjunto denomina-se pico ou overshooting.
--
50-
51: muitas vezes, no resgisto de potenciais, encontra-se uma situação chamada hiperpolarizaçao ou pós-potencial. essa situação ocorre quando a célula está a voltar ao seu potencial de repouso e se apresenta, durante um curto período de tempo, ainda mais negativa do que no estado de repouso.
52-outro aspecto importante prende-se com o facto de:
--
66-
67:com a abertura dos canais, o potássio (k+), que se encontrava em grande quantidade do lado de dentro da célula, começa a sair fazendo com que o seu interior vá ficando gradualmente mais negativo (já que está a perder cargas positivas). isto gera então uma diferença de potencial em que há excesso de cargas positivas do lado de fora célula e um excesso de cargas negativas do lado de dentro. os novos iões de potássio que querem sair devido à grande quantidade de potássio no meio intracelular, são puxados pelas cargas negativas presentes no meio extracelular e quanto maior for o número de saídas maior é o potencial gerado entre o meio intra e extracelular. todo este processo caminha para uma situação de equilíbrio, denominada de equilíbrio electroquímico, chegando-se àquilo que é o potencial de repouso. o potencial de repouso deve-se, portanto, ao equilíbrio de movimento cargas cujo responsável é o potássio (ião k+ é o ião para o qual a membrana é mais permeável) e por isso podemos pensar nele como determinante deste mesmo potencial.
68:em suma, existe um potencial de repouso porque há muito potássio do lado de dentro da célula e pouco do lado de fora, havendo por isso saída destes iões k+ que são equilibrados por um gradiente electroquímico.
69-
70: agora atendendo à figura 5, considera-se que a célula aqui retratada foi excitada (neste caso específico, o potencial de repouso é de -80mv). esta excitação, como aliás já foi dito, pode ser feita por fornecimento de uma (1) descarga eléctrica, (2) estímulo químico ou (3) estímulo mecânico (ver atrás).
71-ora mais uma vez é necessário distinguir dois acontecimentos possíveis de se verificarem:
--
77-por outro lado, o que vai acontecer à membrana já não dependerá do estímulo fornecido mas dependerá sim dos seus próprios fenómenos. assim, abrem-se canais de sódio que anteriormente estavam fechados. enquanto que do lado de fora da célula existe muito sódio, o lado de dentro da célula possui pouca concentração deste e, por isso, começa a entrar sódio para dentro da célula, por um simples gradiente – despolarização. como o ião sódio tem carga positiva o meio intracelular vai-se tornando, gradualmente, mais positivo em relação ao exterior, ao passo que o meio extracelular se vai tornando mais negativo em relação ao interior.
78:é importante referir que na altura em que decorre o potencial de acção a bomba de sódio-potássio fica inactiva. a certa altura é atigido o pico de passagem de sódio através dos canais; a partir desse momento os canais fecham, não permitindo mais a passagem de iões sódio. no interior celular deixou de existir o gradiente electroquímico de repouso, devido às concentrações de cargas positivas provocadas pelo sódio e potássio. simultaneamnete à inactivação dos canais de sódio ocorre a abertura dos canais de potássio, permitindo assim a saída deste ião. à medida que o potássio vai abandonando o interior celular, este vai-se tornando cada vez mais negativo, permitindo à célula aproximar-se novamente o seu potencial de repouso. os canais de potássio fecham assim que o potencial de repouso é atingido. no final, no interior da célula existe menos potássio e mais sódio do que existia inicialmente. deste modo, a bomba de sódio-potássio volta a funcionar, permitindo a entrada de potássio e a saída do excesso sódio para do meio intracelular, repondo assim as condições iniciais.
79:resumindo, o potencial de acção é uma alteração do potencial de repouso da membrana de células excitáveis, provocado por um estímulo eficaz que, numa primeira fase, abre de canais de sódio que permitem a entrada deste ião para o interior celular, ocorrendo a despolarização, e que, numa segunda fase, abre canais de potássio que permitem a saida de potássio para o exterior celular, ocorrendo a repolarização. durante o processo, as concentrações de sódio e potássio são alteradas, provocando a activação da bomba de sódio-potássio que repõe as condições iónicas iniciais ao deixar o sódio em excesso sair para o exterior da célula e o potássio entrar para o interior desta.
80-
--
86-
87:figura 6. na representação do primeiro canal, a célula encontra-se em repouso e pronta a ser estimulada. na segunda representação, no estado activado do canal de sódio, ocorre a entrada de sódio para o interior celular e despolarização. seguidamente, os canais de sódio começam a fechar e os de potássio começam a abrir. com a inactivação dos canais de sódio entra-se no período refractário absoluto. a membrana vai recuperando, lentamente, o potencial de repouso. um novo estímulo eficaz permite que sejam abertos canais de sódio que já se encontrassem em repouso, enquanto que os canais ainda inactivados permanecem inalterados. até ao momento em que todos os canais de sódio estejam activados está-se no período refractário relativo.
88- na figura 6 está representado um canal de sódio (em cima) e outro de potássio (em baixo), existentes na membrana.
89: os canais de sódio são um conjunto de subunidades proteicas que atravessam a membrana e que apresentam dois prolongamentos (comportas), um do lado exterior e outro do lado interior da membrana. durante o potencial de repouso da membrana a comporta exterior encontra-se fechada; a comporta interior está aberta.
90- quando provoco uma alteração na membrana, a subunidade sofre uma alteração conformacional. tal alteração pode ocorrer:
--
93- quando o canal está totalmente aberto (ambas as comportas estão abertas), diz-se que está no estado activado. neste momento, devido à livre entrada de iões sódio, o potencial da membrana aumenta: sobe de -90 mv para +35mv. nos +35mv a conformação da comporta interna da membrana sofre uma alteração, fechando – estado inactivado. nesta fase, qualquer estímulo que actue do lado externo da membrana, por muito intenso que seja, não tem qualquer efeito: não tem a capacidade de permitir a passagem de sódio. a conformação inactivada dos canais de sódio é a base da refractariedade destes.
94: a paragem na entrada de sódio e a saída de potássio para o exterior celular permitem a repolarização da célula, levando à completa recuperação do potencial de repouso da membrana. nesta altura, já é possível activar o canal de sódio e, caso o estímulo seja eficaz, ocorre novo potencial de acção.
95- a transição do estado inactivado dos canais para o seu estado activado não ocorre em todos os canais ao mesmo tempo. existe um curto espaço de tempo, já no final do potencial de acção, no qual certos canais já se encontram no estado de repouso, enquanto que outros ainda estão no estado inactivado: este é o período refractário relativo. neste período é possível, com um estímulo eficaz, provocar a activação de alguns dos canais (dos que estavam no estado de repouso), mas não de todos, já que há canais ainda inactivados. deste modo, a resposta, que depende do número de canais de sódio activados, não tem uma amplitude normal. é o número de canais de sódio em activação ou inactivação que permite marcar no tempo o período refractário absoluto e relativo.
--
102- por análise do gráfico verifica-se que:
103:o potencial de repouso é devido a uma maior conductância para o potássio do que para o sódio;
104-ao estimular uma célula e ao provocar a abertura dos canais de sódio aumento imenso a permeabilidade/conductância para o sódio. deste modo ele entra para o interior celular provocando o aumento do potencial da célula e a sua despolarização;
--
106- ao mesmo tempo que a conductância para o sódio diminui, a conductância para o potássio começa subir, permitindo a saída do potássio para o exterior celular. é a saída de potássio para o exterior celular que, juntamente com a paragem de entrada de sódio, permite que o processo de repolarização ocorra.
107:quando o potencial começa a voltar à situação de repouso as conductâncias de sódio e potássio não são, ainda, exactamente iguais às iniciais: a conductância ao potássio permanece um pouco mais elevada, enquanto que a ao sódio normaliza. como o potencial da membrana depende da relação (o valor desta relação diminui, já que a conductância ao sódio estabiliza mas a conductância ao potássio é maior), ele torna-se mais negativo antes de ser atingido novamente o potencial de repouso – hiperpolarização. tal acontece porque a abertura e oclusão dos canais de potássio é muito mais lenta do que a dos canais de sódio.
108-