/cygdrive/d/Potencial/Fr/Pages-completes/membranne/17.TXT 8- 9:on mesure l activité des neurones par des techniques d électrophysiologie principalement par la technique de courant imposé (current-clamp) qui mime mieux les conditions physiologiques normales. pendant un enregistrement électrophysiologique de courant imposé, le voltage (ou potentiel) membranaire du neurone varie librement tandis que le courant est contrôlé par l expérimentateur. faisons un petit rappel : la loi d ohm, u=rxi, affirme que le voltage (u) est le produit de la résistance (r) et du courant (i). rappelons-nous aussi que les canaux ioniques dans la membrane des neurones changent la résistance (r) de la membrane. ainsi, tous changements de résistance de la membrane (dûs à l activité du neurone et ses canaux ioniques), dans des conditions de courant imposé (stable et connu par l expérimentateur), se reflètent en variations de voltage. un enregistrement typique d un neurone est présenté à la première figure. on y voit le potentiel de membrane qui varie selon l activité du neurone. on utilise généralement le terme potentiel, au lieu de voltage ou tension ou encore différence de potentiel. tous ces termes sont cependant équivalents. initialement, le neurone est inactif ou au repos et son potentiel de membrane est autour de -70mv. on appelle le potentiel durant cette période potentiel de repos . ensuite, le neurone produit une série de pics de potentiels que l on appelle des potentiels d action. les potentiels d action sont l expression électrique de nos influx nerveux. 10- 11- 12:en regardant de plus près un potentiel d action, on se rend compte que celui-ci possède plusieurs caractéristiques. premièrement, toute augmentation du potentiel de membranaire est nommée dépolarisation parce qu elle rend la membrane moins négative (de -70mv, on va vers zéro et les valeurs positives). inversement, une diminution du potentiel membranaire est nommée hyperpolarisation puisqu elle rend la membrane encore plus négative (de -70mv vers des valeurs encore plus négatives). le potentiel d action est donc la dépolarisation maximale qu un neurone peut produire. en fait, le potentiel d action est une vague d inversion de la polarité électrique de part en part de la membrane cellulaire passant de -70mv à +40mv. pour qu un potentiel d action puisse se produire, le potentiel membranaire doit dépasser un seuil que l on appelle potentiel de seuil . on dit d ailleurs que la production d un potentiel d action se fait selon la loi du tout ou rien . il n y a pas de demi-mesure : on a un potentiel d action ou on en a pas ! après le potentiel d action, il y a toujours une chute du potentiel membranaire sous le potentiel de repos que l on nomme post-hyperpolarisation . cette période, suivant le potentiel d action, est aussi nommée période réfractaire parce qu il est plus difficile durant ce temps de stimuler le neurone étant donné que son potentiel est plus loin du potentiel de seuil. 13:le potentiel de repos des neurones est établi grâce à l ouverture de quelques canaux ioniques au potassium (k+). la pompe na/k établit un gradient chimique de tel sorte que les ions k+ sont concentrés dans le milieu interne du neurone.cependant, quelques ions k+ sortent de la cellule via les canaux potassiques entraînant un surplus de charges positives du côté externe. le gradient électrostatique généré par la différence de distribution des charges de part et d autre de la membrane, s oppose au gradient chimique. un équilibre de flux d ions k+ entrant et sortant s établit. a l aide l électrode de chaque côté de la membrane, on mesure un potentiel de repos autour de -70mv. 14:le repos des neurones : potentiel de repos 15- -- 18- 19:la pompe échangeuse na/k fait continuellement sont travail, lentement mais sûrement, établissant les gradients chimiques pour les ions sodium (na+) et potassium (k+) (voir génie 101). les ions na+ sont concentrés à l extérieur du neurone, tandis que les ions k+ sont concentrés dans le neurone. le travail des pompes échangeuses d ions garde le potentiel pratiquement neutre (autour de zéro) et ne permet pas d établir un potentiel électrique à elles seules. cependant, puisque les canaux ioniques au k+ sont ouverts, quelques ions k+ sortent du neurone sous la poussée du gradient chimique des ions k+. cette sortie d ions k+ déséquilibre les charges électriques de chaque côté de la membrane. par conséquent, il y a plus de charges positives du côté externe du neurone que du côté interne. en mesurant avec des électrodes de chaque côté de la membrane, on a déterminé que le potentiel de repos était autour de -70mv. suite à l établissement du potentiel de membrane à une valeur négative, une autre force agit sur les ions k+. en effet, les charges négatives dans le neurone attirent les ions k+, tandis que les charges positives les repoussent. dit autrement, une force électrostatique attire les ions k+ vers le milieu interne du neurone. -70mv est le point d équilibre entre le gradient chimique et la force électrostatique pour les ions k+ ce qui explique l établissement du potentiel de repos à cette valeur. cependant, les ions na+ ont un léger effet qui dépolarise la membrane au repos parce que de rares canaux sodiques sont ouverts. le potentiel de repos est donc légèrement plus positif qu à l effet seul des canaux potassiques et des ions k+. 20-neurone at work : potentiel d action -- 22- 23:le potentiel d action est une vague d inversion de la polarité électrique de la membrane cellulaire, selon le principe du tout ou rien. si le potentiel de repos implique les canaux ioniques au potassium (k+), le potentiel d action nécessite en plus les canaux ioniques au sodium (na+) (voir canaux sodiques). voyons-le étape par étape (voir la figure au bas de la page). 24- -- 38- 39:les canaux au potassium sont lents au point où trop d ions k+ sortent et le potentiel membranaire passe sous le potentiel de repos (en 5). la membrane s hyperpolarise le temps que la plupart des canaux potassiques se referment et que le gradient chimique des ions k+ et le gradient électrostatique se rééquilibrent. pendant, ce temps, les canaux ioniques au na+, inactivés pendant le potentiel d action, se rechargent et reprennent une conformation fermée, mais activable. puisque les canaux sodiques sont inactivés, il est très difficile de stimuler le neurone pour avoir un autre potentiel d action immédiatement. cette période est donc nommée période réfractaire. 40-