/cygdrive/d/Potencial/Br/Pages-completes/membrana/44-02.TXT
12-
13:potencial de membrana em fibras nervosas
14-
15: o potencial de membrana das fibras nervosas de grande calibre, quando não é transmitido sinais nervosos, é de cerca de - 90mv. isto é, o potencial no interior da fibra nervosa é de 90mv mais negativo que o potencial do líquido intersticial, por fora da fibra.
16-
--
28-
29: os fatores importantes para o estabelecimento do potencial de membrana em repouso normal - 90mv são:
30-
--
32-
33: devido a reduzida permeabilidade da membrana neural aos íons, causada pela diminuta difusão de íons sódio pelos canais de vazamento k+ /na+ . a proporção entre os íons sódio do interior e do exterior é de 0,1 enquanto que a proporção passa o íon potássio é de 35 para 1, de modo intuitivo, pode-se ver que, a difusão do potássio terá contribuição muito maior para o potencial de membrana que a difusão de sódio. na fibra nervosa a permeabilidade da membrana ao potássio é cerca de 100 vezes que para o sódio. o potencial interno da membrana obtido por este conjunto de fatores é de - 86mv.
34-
--
36-
37: a contribuição da bomba de sódio-potássio, como já foi colocado, ocorre o bombeamento contínuo de três íons sódio para o exterior, e dois íons potássio para para o interior da membrana. o fato de serem bombeados mais íons sódio para o exterior que potássio para o interior resulta em perda continuada de cargas positivas pelo interior da membrana, o que causa grau adicional de negatividade (-4mv), logo o potencial de membrana efetivo, com todos os fatores atuando ao mesmo tempo, é de -90mv.
38-
--
40-
41: os potenciais de difusão, causados pela difusão do sódio e principalmente do potássio produziriam um potencial de membrana na ordem de -86mv, e -4mv seriam resultado da contribuição da bomba eletrônica de sódio-potássio, produzindo potencial efetivo de membrana de -90mv.
42-
43: o potencial de membrana em repouso nas grandes fibras musculares esqueléticas é, aproximadamente, o mesmo que o das fibras nervosas mais calibrosas, em torno de -90mv. contudo, nas fibras nervosas mais delgadas e nas fibras musculares, por exemplo, as do músculo liso, bem como muitos neurônios do sistema nervoso central, o potencial de membrana pode ser de apenas -40mv a -60mv, em vez de -90mv.
44-
--
46-
47: os sinais neurais são transmitidos por meio de potenciais de ação, que são variações muito rápidas do potencial de membrana. cada potencial de ação começa por modificação abrupta do potencial de repouso normal, para um potencial positivo e, em seguida retorna rapidamente para o potencial negativo. para produzir um sinal neural, o potencial se desloca, ao longo da fibra nervosa, até atingir o seu término.
48-
49: durante o período de repouso, antes do início do potencial de ação, a condutância do potássio é cerca de 50 a 100 vezes maior que o sódio. isso causado pelo maior vazamento de íons potássio que de íons sódio pelos canais de vazamento . com o início do potencial de ação (através de um estímulo) o canal de sódio voltagem dependente ficam instantaneanemente ativados, permitindo um aumento de 500 vezes a condutância do sódio.(fase de despolarização). em seguida, o processo de inativação fecha os canais de sódio dentro de fração de milisegundos. o inicio do potencial de ação também leva á ativação, pela voltagem, os canais de potássio, fazendo-os abrir em fração de milisegundos após a abertura dos canais de sódio (fase de repolarização). e ao término do potencial de ação, o retorno do potencial de membrana seu estado negativo faz com que os canais de os potássio se fechem, voltando ao seu estado original, o que só ocorre após breve retardo. (hiperpolarização -95mv).
50-
--
60-
61: quando o potencial de membrana fica menos negativo, passando de -90mv para zero, ele passa por uma voltagem, entre -70 e -50mv, que provoca as alterações conformacionais da comporta de ativação, fazendo com que ela abra (estado ativado), durante este estado, os íons sódio podem jorrar por esses canais, aumentando a permeabilidade ao sódio da membrana por até 50 a 500 vezes.
62-
63: o aumento da voltagem que abre a comporta de ativação também fecha a comporta de inativação. contudo, o fechamento da comporta de inativação só ocorre após alguns décimos de milésimos de segundo da abertura da comporta de ativação (processo lento de fechamento). a partir desse momento, o potencial de membrana começa a variar em direção ao valor normal do estado de repouso (processo de repolarização).
64-
65: obs.: não é possível nova abertura dos canais de sódio até que o potencial de membrana retorne a seu valor de repouso ou muito próximo a ele.
66-
--
68-
69: durante o estado de repouso, o canal de potássio fica fechado, como mostra a figura, e os íons são impedidos de passar por esse canal para o exterior. quando o potencial de membrana começa a a aumentar, a partir de -90mv, em direção a zero, essa variação de voltagem provoca alteração conformacional abrindo o canal e permitindo o aumento da difusão do potássio por ele. contudo, devido à lentidão com que esses canais de potássio se abrem, eles ficam abertos apenas a partir do momento em que os canais de sódio começam a ser inativados e, portanto, se fechando. assim, a diminuição do influxo de sódio para a célula, com aumento simultâneo de efluxo de potássio, acelera de muito o processo de repolarização, levando, dentro de poucos décimos milésimos de segundo, à recuperação completa do potencial de membrana de repouso.
70-