/cygdrive/d/Potencial/Br/Pages-completes/acao/51-01.TXT
1-
2:potencial de ação
3-
4:a. uma visão esquemática do potencial de ação idealizado. ilustra as suas várias fases à medida que ele percorre um único ponto da membrana plasmática. b. registros reais de potenciais de ação são comumente distorcidos em comparação às visões esquemáticas devido a variações nas técnicas eletrofisiológicas de registro.
5-
6:um potencial de ação é uma onda de descarga elétrica que percorre a membrana de uma célula. potenciais de ação são essenciais para a vida animal, porque transportam rapidamente informações entre e dentro dos tecidos. eles podem ser gerados por muitos tipos de células, mas são utilizados mais intensamente pelo sistema nervoso, para comunicação entre neurônios e para transmitir informação dos neurônios para outro tecido do organismo, como os músculos ou as glândulas.
7-
--
24- 5 período refratário
25: 6 potencial de ação de placa motora
26- 7 influências externas
--
30- 7.2.2 venenos atuantes na liberação dos neurotransmissores
31: 8 potencial de ação & darwin
32- 9 referências
--
37-
38:uma voltagem elétrica, ou diferença de potencial, sempre existe entre o interior e o exterior de uma célula. esse fato é causado por uma distribuição de íons desigual entre os dois lados da membrana e da permeabilidade da membrana a esses íons. a voltagem de uma célula inativa permanence em um valor negativo — considerando o interior da célula em relação ao exterior e varia muito pouco. quando a membrana de uma célula excitável é despolarizada além de um limiar, a célula dispara um potencial de ação, comumente chamado de espícula (leia limiar e início).
39-
40:um potencial de ação é uma alteração rápida na polaridade da voltagem, de negativa para positiva e de volta para negativa. esse ciclo completo dura poucos milisegundos. cada ciclo — e, portanto, cada potencial de ação, possui uma fase ascendente, uma fase descendente e, ainda, uma curva de voltagem inferior a do potencial de repouso de membrana (leia fases do potencial de ação). em fibras musculares cardíacas especializadas, como por exemplo as células do marcapasso cardíaco, uma fase de platô, com voltagem intermediária, pode preceder a fase descendente.
41-
42:potenciais de ação podem ser medidos por meio de técnicas de registro de eletrofisiologia e, mais recentemente, por meio de neurochips que contêm eosfets (transistores de efeito de campo de semicondutor eletrólito-óxido). um osciloscópio que esteja registrando o potencial de membrana de um único ponto em um axônio mostra cada estágio do potencial de ação à medida que a onda passa. suas fases traçam um arco que se assemelha a uma senóide distorcida. sua ordenada depende se a onda do potencial de ação atingiu aquele ponto da membrana, ou se passou por ele e, se for o caso, há quanto tempo isso ocorreu.
43-
44:o potencial de ação não permanece em um local da célula, ele percorre a membrana (leia propagação). ele pode percorrer longas distâncias no axônio, por exemplo para transmitir sinais da medula espinhal para os músculos do pé. em grandes animais, como as girafas e baleias, a distância percorrida pode ser de vários metros.
45-
46:tanto a velocidade quanto a complexidade do potencial de ação variam entre diferentes tipos de células. entretanto, a amplitude das alterações de voltagem tende a ser rigorosamente a mesma. dentro da mesma célula, potenciais de ação consecutivos são tipicamente indistinguíveis. neurônios transmitem informação gerando seqüências de potenciais de ação, chamadas trens de pulsos (spike trains em inglês). variando a freqüência ou o intervalo de tempo dos disparos de potencial de ação gerados, os neurônios podem modular a informação que eles transmitem.
47-
--
49-
50:ver artigo mecanismos básicos do potencial de ação
51-
--
56-
57:o potencial limiar pode ser alcançado ao alterar-se o balanço entre as correntes de sódio e potássio. por exemplo, se alguns canais de sódio estão em um estado inativado (comportas de inativação fechadas), então um dado nível de despolarização irá ocasionar a abertura de um menor número de canais de sódio (os que não estão inativados) e uma maior despolarização será necessária para iniciar um potencial de ação. essa é a explicação aceita para a existência do período refratário (veja o tópico sobre período refratário).
58-
--
66-
67: a seta azul indica a voltagem máxima que o pico do potencial de ação pode atingir. este é, na verdade, o maior potencial de membrana que esta célula pode alcançar. não é possível atingir ena por causa da influência contrária da corrente de potássio.
68-
--
72-
73:em neurônios, despolarizações tipicamente se originam nos dendritos pós-sinápticos e potenciais de ação, nos cones de implantação ( leia mais sobre cone de implantação e zid). teoricamente, entretanto, um potencial de ação pode ter início em qualquer lugar de uma fibra nervosa.
74-
--
76-
77:nos axônios, o potencial de ação se propaga de modo misto, alternando entre duas fases: uma passiva e outra ativa.
78-
--
80-
81:íons de carga positiva, propagam-se perimembranalmente e bidirecionalmente de encontro à negatividade (lei de coulomb). contudo, somente os íons que vão na direção imposta da propagação criam um potencial de ação nesta membrana, pois a membrana anterior está em período refratário; já a membrana posterior está em potencial de repouso de membrana, o que permite que nela haja o potencial de ação. se houver estímulo artificial (um eletrodo) no meio de um axônio, o potencial se propagará bidirecionalmente, pois não haverá períodos refratários impedindo-o. com a propagação, a fase passiva perde parte de seus íons, o que acarreta uma menor energia. esta perda dá-se de dois modos: choques físicos dos íons com moléculas citoplasmáticas e saída dos íons para o meio extracelular por canais de vazamento de membrana. deste modo, quanto mais distantes os canais de sódio voltagem-dependentes estiverem, mais perda de energia ocorre.
82-
--
84-
85:compreende o potencial de ação propriamente dito. ocorre quando os íons positivos da fase passiva despolarizam a membrana adjacente de modo rápido e suficiente para despertar a avalanche de íons sódio (por feedback positivo), através dos canais de sódio voltagem-dependentes. estes íons ganham o meio intracelular, e participarão da fase passiva da propagação. o fornecimento de íons sódio para a fase passiva é abundante. como a variação da voltagem nesta fase é sempre constante, não ocorre perda de energia considerável. os mecanismos desta fase já foram explicados anteriormente.
86:os cátions à esquerda, dentro da célula, são conseguidos a partir de um potencial de ação. passivamente, eles se difundem para outro nódulo de ranvier, onde gerarão um novo potencial de ação.
87-
--
89-
90:a velocidade de propagação do potencial de ação pode ser variada ao se variar o tempo de duração de alguma das duas fases da propagação. contudo, a fase ativa costuma ser constante nas células, durando em torno de 4ms. deste modo, a célula varia a duração da fase passiva, havendo dois modos básicos:
91-
--
95-
96:o aumento do calibre do axônio ou célula provoca um aumento da velocidade de propagação do potencial de ação, pois há diminuição da resistência longitudinal, provocada por uma maior área de secção transversal.
97-
98:em alguns axônios do polvo atlântico loligo pealei, a velocidade de propagação do potencial de ação alcança velocidades superiores a 100 m/s, em virtude do calibre elevado e da mielina espessa.
99-
--
103-
104:a bainha de mielina fornece um aumento do isolamento celular (aumento da resistência de membrana), em virtude de não haver canais de vazamento de membrana onde há mielina, deste modo, a fase passiva perde menos íons, o que aumenta a chance do potencial de ação ter sucesso. além de não haver canais de vazamento de membrana, não há também praticamente nenhum tipo de canal de membrana quando há bainha de mielina (ex.: bombas de sódio e potássio), o que provoca para a célula uma menor necessidade de síntese protéica, ou seja, menos gasto energético.
105-
106:a bainha de mielina permite uma maior velocidade da fase passiva da propagação do potencial de ação (diminui a capacitância de membrana e aumenta a resistência de membrana). além disso, diminui o número de fases ativas da propagação do potencial de ação, tornando a propagação mais veloz ainda. as fases ativas da propagação ocorrem em máculas da bainha de mielina, os nódulos da ranvier. neles, diferentemente da zona cercada por bainha de mielina, há abundância de canais de íon sódio voltagem-dependentes (densidade até quatro ordens de magnitude a mais que nas membranas amielínicas), o que permite a ocorrência do potencial de ação, que corresponde à fase ativa da propagação do potencial de ação. a distância entre os nódulos de ranvier deve ser muito bem calculada pelas células, de modo que o potencial passivo chegue com íons suficientes para provocar o potencial de ação.
107-
--
111-
112:há um modelo biológico e um modelo físico que explicam a propagação do potencial de ação. o último é útil na quantificação dos fenômenos que acompanham a propagação, pois se utiliza de equações físicas, que são deduzidas com base nas três propriedades passivas da membrana: capacitância da membrana, resistência da membrana e resistência longitudinal. nele, os resistores representam canais iônicos de membrana, enquanto um capacitor representa a membrana lipídica. para as comportas dependentes de voltagem, usam-se resistores variáveis, visto que a resistência nesta comporta varia. já os canais iônicos de repouso possuem resistores fixos. os grandientes eletroquímicos dos íons são baterias. deste modo, o modelo físico é interessante para pesquisas e para a indústria, que o usa na fabricação de marca-passos. já o modelo biológico tem sua utilidade na didática.
113-
114:como a propagação do potencial de ação é basicamente a mesma para as diferentes células, não há como diferenciar as variadas ações que um sinal de propagação pode ter ao chegar ao sistema nervoso central (tato, propriocepção, visão etc). deste modo, o que irá determinar a ação de cada propagação do potencial de ação, é via, o caminho seguido por cada um deles, ou seja, as diferentes rotas presentes no organismo (ex.: trato espino-cerebelar, trato espino-talâmico etc).
115-
--
117-
118:algumas patologias degradam a condução saltatória e reduzem a velocidade de propagação do potencial de ação. a mais conhecida é a esclerose múltipla, na qual a degradação da bainha de mielina prejudica os movimentos coordenados.
119-
--
122-
123:o período refratário acompanha o potencial de ação na membrana. tem como efeito limitar a freqüência de potenciais de ação, além de promover a unidirecionalidade da propagação do potencial de ação, o que pode ser entendido como conseqüência da limitação de salvas de potenciais de ação.
124-
125:o período refratário divide-se em absoluto e relativo. no absoluto, qualquer estímulo para gerar potencial de ação é inútil, pois os canais de sódio estão em estado inativo (comporta rápida aberta e comporta lenta fechada). no relativo, alguns destes canais já estarão de volta ao repouso ativável (comporta rápida fechada e comporta lenta aberta), mas nem todos. estímulos supralimiares conseguem gerar potenciais de ação no período refratário relativo.
126-
127:a transição entre os dois períodos ocorre aproximadamente quando a repolarização do potencial de ação atinge o potencial limiar excitatório, que é quando as comportas lentas do canal de sódio voltagem-dependente começam a abrir.
128-
--
130-
131: potencial de ação de placa motora
132-visão global de uma junção neuromuscular: 1 - axônio 2 - junção 3 - fibra muscular 4 - miofibrila
--
140-
141:um ponto importante a ser considerado é a constituição macromolecular distinta dos canais ativados pela ach e os voltagem-dependentes. este fato pode ser verificado pelo uso de drogas e toxinas, por exemplo, a tetrodotoxina (ttx)¹, este veneno provoca bloqueio dos canais de na+ voltagem dependentes. isto pode ser fatal, pois a despolarização do neurônio motor ficará prejudicada e conseqüentemente a transmissão neuromuscular. a a-bungarotoxina (proteína do veneno da cobra) e o curare (toxina de algumas plantas) são drogas que bloqueiam os canais de na+ dependentes da ach, mas não bloqueia os canais na+ voltagem-dependentes, assim, mesmo possuindo ach na fenda sináptica, a transmissão do potencial de ação do neurônio motor para a fibra muscular ficará grandemente prejudicada, podendo levar a morte.
142-
--
152-
153:baixas concentrações extracelulares de potássio promovem uma hiperpolarização no potencial de repouso de membrana da célula, pois os canais repouso de potássio estão sempre abertos. a hiperpolarização faz com que o limiar excitatório da célula aumente. portanto, serão necessários estímulos muito grandes para a geração do potencial de ação. essa alteração, no músculo cardíaco, leva a deficiência na contratilidade.
154-
155:já o aumento da concentração extracelular de potássio resulta na despolarização do potencial de membrana das células. essa despolarização abre canais de sódio voltagem dependentes, mas em quantidade insuficiente para gerar um potencial de ação. os canais de sódio então entram em período refratário aumentando assim o potencial de repouso de membrana da célula. dessa forma há uma diminuição gradativa do limiar excitatório da célula. ou seja, serão necessários estímulos cada vez menores para gerar um potencial de ação. isso pode causar danos cardíacos, neuromusculares e gastrintestinais. no coração, pode levar a fibrilação ventricular ou assistolia.
156-
--
163-
164: tetrodotoxina: atua bloqueando os canais de sódio, impedindo que o potencial de ação seja gerado e, consequentemente, paralisando os organismos que a ingerem. tal substância é encontrada em algumas espécies de peixe-balão.
165-
--
167-
168: alfa-toxinas: prolongam o potencial de ação, causando distúrbios nos snc, uma espécie de confusão do snc. é encontrada no veneno de escorpião.
169-
--
193-
194: potencial de ação & darwin
195-
196:com a evolução, alguns organismos tornaram-se complexos e maiores. houve, então, necessidade de manter fidedigna as informações das porções mais distais do organismo. para tal, o potencial de ação tornou-se um mecanismo muito eficiente, pois sua informação está contida na freqüência, que é uma propriedade que depende da fonte somente, ou seja, não se altera até chegar ao seu destino. diferente do potencial passivo, que tem sua informação contida na amplitude, sujeita a várias alterações pelo meio. comparando-se com as ondas de rádio, pode-se dizer que o potencial de ação equivale à fm (freqüência modulada), enquanto o potencial passivo equivale à am (amplitude modulada).