/cygdrive/d/Potencial/Br/Pages-completes/acao/51-01.TXT
41-
42:potenciais de ação podem ser medidos por meio de técnicas de registro de eletrofisiologia e, mais recentemente, por meio de neurochips que contêm eosfets (transistores de efeito de campo de semicondutor eletrólito-óxido). um osciloscópio que esteja registrando o potencial de membrana de um único ponto em um axônio mostra cada estágio do potencial de ação à medida que a onda passa. suas fases traçam um arco que se assemelha a uma senóide distorcida. sua ordenada depende se a onda do potencial de ação atingiu aquele ponto da membrana, ou se passou por ele e, se for o caso, há quanto tempo isso ocorreu.
43-
--
54-
55:potenciais de ação são disparados quando uma despolarização inicial atinge o potencial limiar excitatório. esse potencial limiar varia, mas normalmente gira em torno de 15 milivolts acima do potencial de repouso de membrana da célula e ocorre quando a entrada de íons de sódio na célula excede a saída de íons de potássio. o influxo líquido de cargas positivas devido aos íons de sódio causa a despolarização da membrana, levando à abertura de mais canais de sódio dependentes de voltagem. por esses canais passa uma grande corrente de entrada de sódio, que causa maior despolarização, criando um ciclo de realimentação positiva (feedback positivo) que leva o potencial de membrana a um nível bastante despolarizado.
56-
--
62-
63: a seta verde indica o potencial de repouso da célula e também o valor do potencial de equilíbrio para o potássio (ek). como o canal de k+ é o único aberto em voltagens tão negativas, a célula permanecerá no potencial ek. note que um potencial de repouso estável será observado em qualquer voltagem na qual a soma i/v (linha verde) ultrapassa o ponto de corrente nula (eixo das abscissas) com um ângulo positivo, como na seta verde. consideremos: qualquer perturbação do potencial de membrana na direção negativa resultará em um influxo de íons que despolarizará a célula de volta ao ponto de cruzamento, enquanto qualquer perturbação do potencial de membrana celular na direção positiva resultará em um efluxo de íons que irá hiperpolarizar a célula de volta ao ponto inicial. portanto, qualquer perturbação do potencial de membrana em torno de uma inclinação positiva tenderá a retornar a voltagem ao ponto de cruzamento.
64-
65: a seta amarela indica o potencial de equilíbrio para o na+ (ena). neste sistema de dois íons, ena é o limite natural do potencial de membrana, o qual uma célula não pode ultrapassar. valores de corrente ilustrados neste gráfico que excedem ena são medidos artificialmente estimulando a célula além de seu limite natural. note, entretanto, que ena apenas poderia ser atingido se a corrente de potássio cessasse completamente.
66-
67: a seta azul indica a voltagem máxima que o pico do potencial de ação pode atingir. este é, na verdade, o maior potencial de membrana que esta célula pode alcançar. não é possível atingir ena por causa da influência contrária da corrente de potássio.
68-
69: a seta vermelha indica o potencial limiar. é a partir deste potencial que a corrente iônica passa a ter resultado líquido em direção ao interior da célula. note que este cruzamento se dá a uma corrente nula, mas exibe uma inclinação negativa. qualquer voltagem menor que o limiar tende a fazer a célula retornar ao potencial de repouso e qualquer voltagem maior que o limiar faz com que a célula se despolarize. esta despolarização leva a um maior influxo de íons, desta forma a corrente de sódio se regenera. o ponto no qual a linha verde atinge seu valor mais negativo é o ponto no qual todos os canais de sódio estão abertos. despolarizações além desse ponto diminuem o influxo de sódio, conforme a força eletroquímica (driving force) diminui com a aproximação do potencial de membrana do ena.
70-
--
154-
155:já o aumento da concentração extracelular de potássio resulta na despolarização do potencial de membrana das células. essa despolarização abre canais de sódio voltagem dependentes, mas em quantidade insuficiente para gerar um potencial de ação. os canais de sódio então entram em período refratário aumentando assim o potencial de repouso de membrana da célula. dessa forma há uma diminuição gradativa do limiar excitatório da célula. ou seja, serão necessários estímulos cada vez menores para gerar um potencial de ação. isso pode causar danos cardíacos, neuromusculares e gastrintestinais. no coração, pode levar a fibrilação ventricular ou assistolia.
156-