/cygdrive/d/Potencial/Fr/Pages-completes/repos/01.TXT
3-définition
4:voir également membrane cellulaire. différence de potentiel qui existe de part et d autre de la membrane de la cellule au repos. dans chaque cellule de l organisme quand elle est au repos, un potentiel de repos de la membrane s observe. ce phénomène s explique par la différence de perméabilité qui existe d une part et d autre de la membrane de la cellule et ceci pour certains types de molécules plutôt que pour d autres. ce phénomène est à l origine de la création d un voltage (si l on préfère un courant électrique) qui est utilisé par la cellule comme une forme d énergie potentielle. ce potentiel de membrane est le résultat de la séparation des charges électriques qui sont de signes opposés. pour résumer il existe des charges négatives et positif de chaque côté de la membrane cellulaire, ce sont des ions (calcium et potassium ayant perdu des électrons).
5-quand une cellule est au repos on dit que celle-ci présente un potentiel de repos de la membrane qui se situe généralement entre -20 et -200 milivolts (millième de volts) selon l organisme et le type de cellules considérées.
6:à l état normal des cellules baignent dans un liquide appelé liquide interstitiel qui est plutôt riche en ions sodium (na+). ces ions sodium sont le résultat d un atome de sodium qui a perdu un électron. pour comprendre le phénomène de potentiel de membrane il est nécessaire également de savoir que la membrane de la cellule est légèrement perméable à l ion potassium (k+) et presque imperméable à (na+). il s opère donc une entrée de sodium vers l intérieur de la cellule attiré par son propre gradient de concentration (voir ci-dessus) alors que l on observe parallèlement une sortie de potassium également en suivant son gradient de concentration. c est la diffusion inégale de ces deux types d ions à travers la membrane de la cellule qui produit une accumulation d ions positifs à l extérieur de la cellule et d ions négatifs à l intérieur de la cellule. ceci crée le potentiel de repos de la membrane. autrement dit la concentration de potassium est plus élevée dans la cellule que dans le liquide interstitiel extracellulaire (à l extérieur de la cellule). à partir de cet instant la diffusion du potassium vers l extérieur va créer une séparation de charges de part et d autre de la membrane, celle-ci est entretenue par l action de la pompe à sodium et à potassium.
7-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/02.TXT
3-
4:le potentiel de membrane d une cellule est du à la séparation de charges consécutive au flux ionique à travers les canaux potassium, lui même du au déséquilibre ionique entretenu activement par les pompes sodium/potassium
5-
--
9-
10:l existence d un potentiel de membrane est universelle aux cellules vivantes.
11-
--
46-
47:la na/k atpase utilise l énergie contenue dans l atp pour maintenir une différence de composition ionique entre l intérieur de la cellule et l extérieur. l activité de la pompe a pour effet direct que les ions potassium sont majoritaires dans le cytoplasme de la cellule, tandis que les ions sodium sont majoritaires à l extérieur de la cellule. l ouverture de canaux potassiums, les seuls canaux qui soient ouverts a l état basal dans la majorité des cellules, permet au gradient chimique du potassium de se dissiper. la séparation de charge résultante crée la différence de potentiel électrique mesurée. l électroneutralité des deux compartiments est violée à proximité de la membrane. toutefois, compte tenu de la géométrie du système, il ne faut qu un surplus d environ 2 ions sur 100 000 pour rendre compte du potentiel de membrane. l électroneutralité est bien respectée macroscopiquement. le champ électrique crée empêche les ions potassiums de sortir.
48-
--
60-
61: toute cellule vivante a un potentiel de membrane. le potentiel électrochimique qui lui correspond constitue une réserve d énergie potentielle qui permet d assurer les transports des substances nécessaires à la survie de la cellule.
62- le potentiel de repos joue un rôle important pour les cellules excitables, comme les neurones et les myocytes. en effet le franchissement par le potentiel de repos d un certain seuil de dépolarisation déclenche chez ces cellules un potentiel d action par l activation de canaux dépendent du potentiel (canaux voltage-dépendent). l importance de la polarisation du potentiel de repos determine donc l excitabilité de la cellule. quand il est très hyperpolarisé (par l activation tonique de canaux potassiques ou chlorures par exemple), la cellule est difficilement excitable, c est á dire qu il faut beaucoup dépolariser la cellule avec des potentiels postsynaptiques excitateurs pour qu elle décharge un potentiel d action. quand le potentiel de repos est très dépolarisé (par la fermeture de canaux potassium ou par l ouverture permanente de canaux sodium), la cellule est plus proche du seuil de déclenchement d un potentiel d action, et donc plus excitable.
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-01.TXT
4-
5:si l on place l extrémité d une microélectrode dans une cellule nerveuse, il est possible, dès l entrée dans la cellule, d enregistrer une différence de potentiel (ddp) par rapport au milieu extérieur d environ 60 mv. cette ddp, appelée potentiel de repos, est variable d une cellule à l autre et caractéristique de toutes les cellules vivantes. l intérieur de la cellule est négatif par rapport à l extérieur, ce qui s exprime par un potentiel de repos ou potentiel de membrane (vm) égal à - 60 mv.
6-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-02.TXT
15-
16:en réalité, si la variation du courant est rapide, la variation du potentiel de membrane suit une courbe exponentielle, du fait des propriétés capacitives (cm) de la membrane. la résistance transversale rm et la capacité cm conjuguent leurs effets pour déterminer l évolution dans le temps de l installation de la tension um aux bornes de la membrane. le produit rm . cm est la constante de temps du circuit (t). ce produit indique, en secondes, le temps nécessaire pour que la tension aux bornes de la membrane atteigne 63,2% de sa valeur maximum.
17-si l on applique un courant très près d un point a de la membrane d un axone et que l on mesure la tension obtenue aux points a, b, c et d, de plus en plus éloignés du point d application, on observe que l amplitude de la tension maximum observée va en diminuant de a à d. ce phénomène est dû à la résistance longitudinale (rl) de la fibre nerveuse. le courant qui traverse la résistance rl de chaque segment (a-b / b-c / c-d) provoque une chute de tension égale au produit de ce courant par la résistance rl du segment. si l on représente l évolution des tensions maximales mesurées aux différents points a, b, c et d en fonction de leur distance par rapport au point de stimulation, on observe que la chute de tension suit une courbe exponentielle. la distance correspondant à une baisse de la tension de départ de 63,2% détermine la constance d espace du système (l).
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-04.TXT
5-
6:pour traverser la membrane, un ion est soumis à un gradient électrochimique (ou driving-force des anglo-saxons), qui s exprime par la différence entre le potentiel de membrane (vm) de la cellule et le potentiel d équilibre de l ion considéré (eion). le flux net d une espèce ionique au travers de ses propres canaux est proportionnel à ce gradient électrochimique.
7-potentiel d equilibre
--
41-
42:supposons une cellule dont la membrane comporte, à la fois, des canaux k+ et na+ ouverts. nous savons que cette cellule dispose de mécanismes de transport actif (pompe na+/k+/atpase) qui permettent de maintenir les concentrations des ions k+ et na+, de part et d autre de la membrane, constantes. les potentiels d équilibre des ions k+ (ek) et na+ (ena) restent donc constants. le potentiel de membrane (vm), qui va s établir, est donc intermédiaire entre les potentiels d équilibre des deux ions, soit entre ek (-87 mv) et ena (+ 60 mv).
43-
44:le potentiel de membrane de la cellule (vm) atteindra un état stable quand le flux net des charges (k+ & na+) passant à travers la membrane sera nul, soit, en termes de courants ioniques, quand ina + ik = 0.
45-
--
57-
58:la valeur du potentiel de membrane dépend de la conductance relative des deux ions, leurs potentiels d équilibre restant constants, et donc du rapport gna / gk
59-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/04.TXT
31-
32:si la membrane n était perméable qu à un seul ion, le potentiel de membrane au repos serait égal au potentiel eion calculé comme ci-dessus. tel n est pas le cas et chaque ion est soumis à un gradient électrochimique exprimé par la différence entre le potentiel de repos em de la membrane et le potentiel théorique calculé e (ion), gradient dont l effet sera de créer un flux d ion, donc un courant ionique. la transposition de la loi d ohm u = r i à un gradient électrochimique donne :
33-
--
36-g (ion) : conductance de la membrane pour l ion (inverse de la résistance)
37:em : potentiel de membrane mesuré
38-e (ion) : potentiel d équilibre de l ion considéré.
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/07.TXT
6-la face interne est négative par rapport à la face externe.
7:cette tension électrique entre les 2 faces est appelée potentiel de membrane ou potentiel de repos. elle est exprimée négativement pour rappeler que l intérieur est négatif par rapport à l extérieur.
8-i – le message nerveux à l échelle de la fibre nerveuse : le potentiel d action
/cygdrive/d/Potencial/Fr/Pages-completes/repos/08.TXT
2-potentiel de repos de membrane
3:le potentiel de repos de membrane de est provoqué par la différence dans des concentrations et des conductances ioniques à travers la membrane de la cellule pendant la phase 4 du potentiel d action. le potentiel de repos normal de membrane dans le myocarde ventriculaire est environ -85 à -95 système mv. ce potentiel est déterminé par la perméabilité sélective de la membrane de cellules à de divers ions. la membrane est la plus perméable au k+ et relativement imperméable à d autres ions. le potentiel de repos de membrane est donc dominé par le potentiel d équilibre de de k+ selon le gradient de k+ à travers la membrane de cellules. le potentiel de membrane peut être calculé using l équation de tension de goldman-hodgkin-katz de . l entretien de ce gradient électrique est dû à de divers pompes d ion et mécanismes d échange, y compris le na+ - la pompe d échange ionique de k+, l échangeur du ca2+ de na+- courant et le d ik1 rectifiant vers l intérieur le courant de k+.
4-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/09.TXT
3-les cellules nerveuses possèdent à l état de repos un
4:potentiel de membrane [14] de l ordre de -90mv du fait
5-d une différence de concentration ionique, principalement
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/10.TXT
3-le potentiel de repos
4:toutes cellules vivantes de l organisme présentent une différence de potentiel électrique transmembranaire ou potentiel de membrane.
5-quand la cellule est au repos, cette différence de potentiel électrique reste stable : c est le potentiel de repos. sa valeur est une caractéristique électrophysiologique de la cellule.
6:certaines cellules (les cellules ‘ excitables , comme les cellules nerveuses, musculaires et glandulaires), sous réserve qu elles soient en activité, (activité spontanée, ou évoquée par stimulation), deviennent capables de produire une (ou plusieurs) brusque(s) et ample(s) variation(s) transitoire(s) de leur potentiel de membrane, et ce à partir de leur potentiel de repos: ces variations rapides et importantes du potentiel de membrane sont les pa. ils caractérisent eux-aussi le type d activité de la cellule émettrice (voir le chapitre suivant).
7-i - mesure du potentiel de repos (fig. 1)
--
35-curieusement les canaux responsables du potentiel de repos sont encore mal connus. on sait qu il existe des canaux qui sont ouverts au potentiel de repos (canaux k+, canaux cationiques divers dont des canaux na+) et dont les propriétés cinétiques et pharmacologiques ont été mal caractérisées.
36:iii - généralisation de la notion de potentiel de membrane et propriétés électriques passives de la membrane
37-1) cas où la membrane est perméable à un seul ion: pile de concentration (équation de nernst)
38:d une manière générale, si la perméabilité de la membrane cytoplasmique pour une espèce ionique i augmente, le potentiel de membrane devient égal au potentiel d équilibre thermodynamique de cet ion i donné par l équation de nernst:
39-où: r = constante des gaz parfaits, t = température absolue z = la valence de l ion (+ 1 pour le k+ et le na+, - 1 pour le ci-, et +2 pour le ca2+), f = faraday, [ion]e = concentration de l ion à l extérieur de la cellule, [ion]i = concentration de l ion à l intérieur de la cellule, à 20°c, rt/f = 25 mv.
--
46-2) gradient électrochimique; courant ionique à travers un canal
47:au repos, l intérieur des cellules est chargé négativement par rapport à l extérieur. ce potentiel vm, dit de repos, est rarement égal au potentiel d équilibre d une espèce cationique. ceci est essentiellement dû au fait (comme nous le verrons dans le § ci-dessous) que la membrane n est pas sélectivement perméable à un seul ion, mais que différents types de canaux ioniques sont ouverts dans la membrane lorsque le potentiel de membrane est à sa valeur de repos. lorsqu une espèce ionique n est pas en équilibre, le flux net n est pas nul. a ce flux net correspond un courant que l on peut mesurer.
48-a. la différence (vm - eion) est appelée gradient électrochimique
49:le potentiel de membrane (vm) d une cellule au repos varie entre -20 et -90 mv suivant le type cellulaire. il est situé le plus généralement entre -40 et -60 mv, et n est égal à aucun des potentiels d équilibre d une espèce cationique. c est-à-dire qu en définitive, aucun cation n est en équilibre, et (vm - ecation) est différent de 0. on appelle cette différence (vm - ecation): gradient électrochimique (ou driving-force).
50-en première approximation, le flux net d une espèce ionique, jion, sera proportionnel à ce gradient:
--
74-a. que se passe-t-il si la membrane contient deux populations différentes de canaux ouverts ?
75:imaginons une cellule fictive dont la membrane comporterait à la fois des canaux k+ et na+ ouverts (fig. 6). supposons que cette cellule possède également un mécanisme permettant de maintenir constantes les concentrations intracellulaires en ions k+ et na+ (les pompes ioniques jouent effectivement un tel rôle). ek et ena, les potentiels d équilibre des ions k+ et na+, restent donc constants car les concentrations en ions na+ et k+ de part et d autre de la membrane restent constantes. on comprend bien que le potentiel de membrane (vm) qui va s établir ne peut être égal ni à ena, ni à ek mais à un potentiel situé à un niveau intermédiaire. le potentiel d une telle cellule évoluera vers un état stable qui sera atteint quand le flux net de charges à travers la membrane (ici ce ne peut être que les ions na+ et k+) sera nul, ce qui, exprimé en termes de courants ioniques, donne:
76:ig. 6 - quel est le potentiel de membrane d une cellule
77-si la membrane contient autant = 10ps et k = 50 ps, vm sera
--
82- au repos, gk est plus grande que gm,
83:de l équation précédente, on voit que la valeur du potentiel de membrane va donc dépendre de la conductance relative des différents ions. si a = gna/gk 171
84-si a est petit, c est-à-dire si gk est grand par rapport à gna, vm se rapprochera de ek. dans notre exemple, avec vm = -60 mv, ek = -84 mv, et ena. = +58 mv, on peut calculer que a = 0,2 , c est-à-dire que le conductance aux ions k+ est 5 fois plus grande que celle des ions na+.
--
91-curieusement, ces canaux sont encore mal connus. on sait qu il existe des canaux qui sont ouverts au potentiel de repos (canaux k+ divers, canaux cationiques non sélectifs, ... ) et dont les propriétés cinétiques et pharmacologiques ont été bien caractérisées. mais il est possible qu il existe également d autres canaux qui participent au potentiel de repos de la cellule mais dont la conductance est trop faible pour que leur activité puisse être enregistrée avec des techniques électrophysiologiques actuelles.
92: généralisation: expression du potentiel de membrane (équation de goldmann)
93-dans les cellules animales, la membrane plasmique possède une grande variété de canaux ioniques et sera donc perméable non seulement aux ions k+ et na +, mais également aux ions ca2+ et cl-. comme précédemment, si l on suppose que des gradients transmembranaires peuvent rester constants, le système évoluera vers un état d équilibre avec un potentiel transmembranaire, vm, qui sera atteint lorsque:
94:4) variations du potentiel de membrane: dépolarisation, hyperpolarisation, potentiel électrotonique. schéma électrique équivalent de la membrane.
95:lorsque le potentiel de membrane se déplace vers les valeurs plus négatives, on dit que la cellule s hyperpolarise ; lorsqu il se déplace vers les valeurs plus positives, la cellule se dépolarise (fig. 7). un flux entrant de cations dépolarise la cellule; un flux sortant l hyperpolarise.
96:le potentiel de membrane vm peut évoluer entre 2 valeurs extrêmes correspondant aux potentiels d équilibre le plus négatif et le plus positif, soit dans le cas de la plupart des cellules animales entre ek et ena. cette évolution est fonction des conductances relatives de la membrane. si les ions cl- sont distribués passivement, alors le potentiel de repos (vm) d une cellule est en première approximation égal à:
97-ainsi, tout ce qui peut faire varier ena, ek, gna ou gk va modifier la valeur de vm. si par exemple ek se rapproche de 0 (par exemple si [k]e augmente), le deuxième terme (gk.ek) diminue et donc vm se rapproche de ena. toutes les autres solutions sont possibles.
98:fig. 7 – les réponses dépolarisantes ou hyperpolarisantes passives en réponse à des injections de courant à l intérieur de la cellule sont appelées potentiels électrotoniques. deux microélectrodes, l une servant à mesurer le potentiel de membrane, l autre à passer du courant sont placées à l intérieur du neurone. un saut de courant sortant (positif) appliqué par l expérimentateur à l intérieur de la cellule la dépolarise; un saut de courant entrant (négatif) l hyperpolarise. ces sauts de courant entraînent l apparition de potentiels électrotoniques dépolarisants ou hyperpolarisants.
99-dans la figure 8, on voit que les potentiels électrotoniques mettent un certain temps à s établir. la capacité (cm) et la résistance (rm) du schéma électrique équivalent de la membrane sont placés en parallèle. lorsque initialement, un courant (i) est appliqué, celui-ci va charger d abord la capacité de membrane. ic représente le courant passant à travers cm. quand la capacité de membrane est chargée, ic redevient nul après être passé par un maximum; simultanément, à mesure que vm change, de plus en plus de courant traverse les canaux ioniques : lorsque, ic étant devenu nul, tout le courant im passe par rm, le potentiel atteint un plateau. ce changement de potentiel est appelé potentiel électrotonique. le front de montée de ce potentiel est une exponentielle dont la constante de temps t = rm*cm ; t peut être mesuré expérimentalement, il correspond au temps mis par le potentiel pour atteindre 63% de sa valeur finale.