/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-04.TXT
41-
42:supposons une cellule dont la membrane comporte, à la fois, des canaux k+ et na+ ouverts. nous savons que cette cellule dispose de mécanismes de transport actif (pompe na+/k+/atpase) qui permettent de maintenir les concentrations des ions k+ et na+, de part et d autre de la membrane, constantes. les potentiels d équilibre des ions k+ (ek) et na+ (ena) restent donc constants. le potentiel de membrane (vm), qui va s établir, est donc intermédiaire entre les potentiels d équilibre des deux ions, soit entre ek (-87 mv) et ena (+ 60 mv).
43-
--
57-
58:la valeur du potentiel de membrane dépend de la conductance relative des deux ions, leurs potentiels d équilibre restant constants, et donc du rapport gna / gk
59-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/04.TXT
27-
28:pour un neurone de mammifère, les potentiels d équilibre calculés sont :
29-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/10.TXT
48-a. la différence (vm - eion) est appelée gradient électrochimique
49:le potentiel de membrane (vm) d une cellule au repos varie entre -20 et -90 mv suivant le type cellulaire. il est situé le plus généralement entre -40 et -60 mv, et n est égal à aucun des potentiels d équilibre d une espèce cationique. c est-à-dire qu en définitive, aucun cation n est en équilibre, et (vm - ecation) est différent de 0. on appelle cette différence (vm - ecation): gradient électrochimique (ou driving-force).
50-en première approximation, le flux net d une espèce ionique, jion, sera proportionnel à ce gradient:
--
74-a. que se passe-t-il si la membrane contient deux populations différentes de canaux ouverts ?
75:imaginons une cellule fictive dont la membrane comporterait à la fois des canaux k+ et na+ ouverts (fig. 6). supposons que cette cellule possède également un mécanisme permettant de maintenir constantes les concentrations intracellulaires en ions k+ et na+ (les pompes ioniques jouent effectivement un tel rôle). ek et ena, les potentiels d équilibre des ions k+ et na+, restent donc constants car les concentrations en ions na+ et k+ de part et d autre de la membrane restent constantes. on comprend bien que le potentiel de membrane (vm) qui va s établir ne peut être égal ni à ena, ni à ek mais à un potentiel situé à un niveau intermédiaire. le potentiel d une telle cellule évoluera vers un état stable qui sera atteint quand le flux net de charges à travers la membrane (ici ce ne peut être que les ions na+ et k+) sera nul, ce qui, exprimé en termes de courants ioniques, donne:
76-ig. 6 - quel est le potentiel de membrane d une cellule
--
95-lorsque le potentiel de membrane se déplace vers les valeurs plus négatives, on dit que la cellule s hyperpolarise ; lorsqu il se déplace vers les valeurs plus positives, la cellule se dépolarise (fig. 7). un flux entrant de cations dépolarise la cellule; un flux sortant l hyperpolarise.
96:le potentiel de membrane vm peut évoluer entre 2 valeurs extrêmes correspondant aux potentiels d équilibre le plus négatif et le plus positif, soit dans le cas de la plupart des cellules animales entre ek et ena. cette évolution est fonction des conductances relatives de la membrane. si les ions cl- sont distribués passivement, alors le potentiel de repos (vm) d une cellule est en première approximation égal à:
97-ainsi, tout ce qui peut faire varier ena, ek, gna ou gk va modifier la valeur de vm. si par exemple ek se rapproche de 0 (par exemple si [k]e augmente), le deuxième terme (gk.ek) diminue et donc vm se rapproche de ena. toutes les autres solutions sont possibles.