/cygdrive/d/Potencial/Fr/Pages-completes/repos/01.TXT
4-voir également membrane cellulaire. différence de potentiel qui existe de part et d autre de la membrane de la cellule au repos. dans chaque cellule de l organisme quand elle est au repos, un potentiel de repos de la membrane s observe. ce phénomène s explique par la différence de perméabilité qui existe d une part et d autre de la membrane de la cellule et ceci pour certains types de molécules plutôt que pour d autres. ce phénomène est à l origine de la création d un voltage (si l on préfère un courant électrique) qui est utilisé par la cellule comme une forme d énergie potentielle. ce potentiel de membrane est le résultat de la séparation des charges électriques qui sont de signes opposés. pour résumer il existe des charges négatives et positif de chaque côté de la membrane cellulaire, ce sont des ions (calcium et potassium ayant perdu des électrons).
5:quand une cellule est au repos on dit que celle-ci présente un potentiel de repos de la membrane qui se situe généralement entre -20 et -200 milivolts (millième de volts) selon l organisme et le type de cellules considérées.
6-à l état normal des cellules baignent dans un liquide appelé liquide interstitiel qui est plutôt riche en ions sodium (na+). ces ions sodium sont le résultat d un atome de sodium qui a perdu un électron. pour comprendre le phénomène de potentiel de membrane il est nécessaire également de savoir que la membrane de la cellule est légèrement perméable à l ion potassium (k+) et presque imperméable à (na+). il s opère donc une entrée de sodium vers l intérieur de la cellule attiré par son propre gradient de concentration (voir ci-dessus) alors que l on observe parallèlement une sortie de potassium également en suivant son gradient de concentration. c est la diffusion inégale de ces deux types d ions à travers la membrane de la cellule qui produit une accumulation d ions positifs à l extérieur de la cellule et d ions négatifs à l intérieur de la cellule. ceci crée le potentiel de repos de la membrane. autrement dit la concentration de potassium est plus élevée dans la cellule que dans le liquide interstitiel extracellulaire (à l extérieur de la cellule). à partir de cet instant la diffusion du potassium vers l extérieur va créer une séparation de charges de part et d autre de la membrane, celle-ci est entretenue par l action de la pompe à sodium et à potassium.
/cygdrive/d/Potencial/Fr/Pages-completes/repos/02.TXT
3-
4:le potentiel de membrane d une cellule est du à la séparation de charges consécutive au flux ionique à travers les canaux potassium, lui même du au déséquilibre ionique entretenu activement par les pompes sodium/potassium
5-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-01.TXT
4-
5:si l on place l extrémité d une microélectrode dans une cellule nerveuse, il est possible, dès l entrée dans la cellule, d enregistrer une différence de potentiel (ddp) par rapport au milieu extérieur d environ 60 mv. cette ddp, appelée potentiel de repos, est variable d une cellule à l autre et caractéristique de toutes les cellules vivantes. l intérieur de la cellule est négatif par rapport à l extérieur, ce qui s exprime par un potentiel de repos ou potentiel de membrane (vm) égal à - 60 mv.
6-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-04.TXT
26-
27:la conductance de toute la membrane d une cellule pour un ion (conductance ionique membranaire), gion, est proportionnelle à la conductance élémentaire d un canal ionique : gion, mais aussi au nombre total de canaux de l espèce ionique considérée dans la membrane : nion et à la probabilité p0 pour que ces canaux soient à l état ouvert :
28-
--
41-
42:supposons une cellule dont la membrane comporte, à la fois, des canaux k+ et na+ ouverts. nous savons que cette cellule dispose de mécanismes de transport actif (pompe na+/k+/atpase) qui permettent de maintenir les concentrations des ions k+ et na+, de part et d autre de la membrane, constantes. les potentiels d équilibre des ions k+ (ek) et na+ (ena) restent donc constants. le potentiel de membrane (vm), qui va s établir, est donc intermédiaire entre les potentiels d équilibre des deux ions, soit entre ek (-87 mv) et ena (+ 60 mv).
43-
27-et d autre part, la pompe na+/k+ ne sont pas altérés.
28:claude bernard [16] a montré que l irritabilité d une cellule se traduit par l inhibition ou l excitabilité. au
29-niveau de la fibre neuronale elle correspond à une fuite de k+ vers le milieu extra cellulaire (inversion de polarisation),
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/09.TXT
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/10.TXT
16-si, comme dans l expérience schématisée dans la figure2, la concentration de potassium du milieu extracellulaire est modifiée de 2,5, 5, ... à 100mm pendant la mesure de er, on s aperçoit que les valeurs de er se stabilisent chaque fois à des valeurs de moins en moins négatives.
17:fig. 2 – mesures de er d une cellule périfusée par différentes solutions de liquide extracellulaire contenant différentes concentrations de potassium.
18-la courbe en trait plein rouge de la figure 3 représente les variations de er mesuré en fonction de [k+]e (échelle logarithmique).
--
48-a. la différence (vm - eion) est appelée gradient électrochimique
49:le potentiel de membrane (vm) d une cellule au repos varie entre -20 et -90 mv suivant le type cellulaire. il est situé le plus généralement entre -40 et -60 mv, et n est égal à aucun des potentiels d équilibre d une espèce cationique. c est-à-dire qu en définitive, aucun cation n est en équilibre, et (vm - ecation) est différent de 0. on appelle cette différence (vm - ecation): gradient électrochimique (ou driving-force).
50-en première approximation, le flux net d une espèce ionique, jion, sera proportionnel à ce gradient:
--
62-cette expression n est que la transposition de la loi d ohm à un gradient électrochimique. le canal peut donc être représenté par le circuit électrique équivalent ci-contre: le gradient de concentration est assimilé à une pile avec une force électromotrice égale au potentiel d équilibre de l ion mis en jeu. cette pile est placée en série avec une conductance
63:d une manière analogue, on peut écrire que, pour une cellule entière, le courant transmembranaire (iion) transporté par une espèce ionique à travers tous les canaux ioniques de la membrane d une cellule, est égal à :
64-iion = gion (vm. - eion) 170
--
74-a. que se passe-t-il si la membrane contient deux populations différentes de canaux ouverts ?
75:imaginons une cellule fictive dont la membrane comporterait à la fois des canaux k+ et na+ ouverts (fig. 6). supposons que cette cellule possède également un mécanisme permettant de maintenir constantes les concentrations intracellulaires en ions k+ et na+ (les pompes ioniques jouent effectivement un tel rôle). ek et ena, les potentiels d équilibre des ions k+ et na+, restent donc constants car les concentrations en ions na+ et k+ de part et d autre de la membrane restent constantes. on comprend bien que le potentiel de membrane (vm) qui va s établir ne peut être égal ni à ena, ni à ek mais à un potentiel situé à un niveau intermédiaire. le potentiel d une telle cellule évoluera vers un état stable qui sera atteint quand le flux net de charges à travers la membrane (ici ce ne peut être que les ions na+ et k+) sera nul, ce qui, exprimé en termes de courants ioniques, donne:
76:ig. 6 - quel est le potentiel de membrane d une cellule
77-si la membrane contient autant = 10ps et k = 50 ps, vm sera
--
88-p0. la probabilité pour que ces canaux soient à l état ouvert.
89:on voit que gk peut être plus grand que gna. si la conductance élémentaire des canaux k+ ouverts au potentiel de repos est plus grande que celle des canaux na+, k supérieur à na , ou si le nombre de ces canaux k+ ouverts est plus grand que le nombre de canaux na+ ouverts, nk * p0. supérieur à nna * p0. dans la majorité des cellules, au repos, il y a beaucoup plus de canaux k+ que de canaux na+ ouverts. l inégalité gk supérieur à gna. explique que l intérieur d une cellule soit négatif par rapport à l extérieur.
90- quels sont les canaux responsables du potentiel de repos ?
--
95-lorsque le potentiel de membrane se déplace vers les valeurs plus négatives, on dit que la cellule s hyperpolarise ; lorsqu il se déplace vers les valeurs plus positives, la cellule se dépolarise (fig. 7). un flux entrant de cations dépolarise la cellule; un flux sortant l hyperpolarise.
96:le potentiel de membrane vm peut évoluer entre 2 valeurs extrêmes correspondant aux potentiels d équilibre le plus négatif et le plus positif, soit dans le cas de la plupart des cellules animales entre ek et ena. cette évolution est fonction des conductances relatives de la membrane. si les ions cl- sont distribués passivement, alors le potentiel de repos (vm) d une cellule est en première approximation égal à:
97-ainsi, tout ce qui peut faire varier ena, ek, gna ou gk va modifier la valeur de vm. si par exemple ek se rapproche de 0 (par exemple si [k]e augmente), le deuxième terme (gk.ek) diminue et donc vm se rapproche de ena. toutes les autres solutions sont possibles.